

Bedienungsanleitung

STROMAT-IP

Dokument: IM_STROMAT-P_PURE_DE_V1.1

Variante: Pure Datum: 16.01.2024

alcona Automation GmbH Ahlener Straße 48

D-59269 Beckum

Tel: +49 (0) 25 21 / 82 30 40 - 0

www.alcona.info

Urheberrechtsklausel

Übersetzung, Weitergabe an Dritte sowie jede Vervielfältigung und Verbreitung sind ohne unsere vorherige Zustimmung untersagt.

Wesentliche Teile, Einrichtungen und Anordnungen sowie die Software, Steuerungs- und Messeinrichtungen unserer Geräte sind im In- und Ausland durch Patentanmeldungen, Patente und Gebrauchsmuster urheberrechtlich geschützt.

© Copyright by alcona Automation GmbH Ahlener Straße 48 D-59269 Beckum

Inhalt

1		Inha	lt	3
2		Sich	erheit	4
_	2.1		erwendung	
	2.2	Ins	stallation / Wartung / Instandhaltung	4
	2.3	La	dekabel (bei Variante Spiralkabel)	4
3		Ents	orgung	5
4			emein	
	4.1	•	erkabelung	
	4.	1.1	24V Steuerleitung	
	4.	1.2	Hauptstromleitung	7
5		Lade	esäule	8
	5.1		echnische Daten	
	5.2	RF	FID-Reader	10
	5.	2.1	RFID-Transponder anlernen	11
	5.3	LE	D-Anzeige	11
	5.4	St	euerplatine	12
	5.	4.1	DIP-Schalter	13
	5.	4.2	LEDs	13
	5.	4.3	Teach-Taster	13
	5.	4.4	Anschlüsse	14
	5.5		destromeinstellung	
	5.6		haltungsladung	
	5.7	Fι	ındamentbefestigung	15
6		Elek	trobox	16
	6.1	Te	echnische Daten	17
	6.2		asisplatine	
	6.3		hlerstromschutz	
	6.5	St	euerbare Verbrauchseinrichtung nach §14a	20
7		Wart	ung	21
	7.1	Jä	hrlich	21
R		FG-k	Conformitätsarklärung	22

2 Sicherheit

2.1 Verwendung

Der STROMAT-P dient zum Aufladen von Elektrofahrzeugen nach IEC 62196.

Es handelt sich um eine Edelstahl-Ladesäule, welche variantenabhängig mit einer Typ 2 Ladebuchse als auch mit einem fest angeschlossenem Spiralkabel verfügbar ist.

Das Produkt wird im Außenbereich auf einem festen Fundament montiert.

Über Hauptstrom- und Steuerleitungen wird der STROMAT-P mit der zugehörigen Elektrobox verbunden. Diese Elektrobox beinhaltet die Hauptstromkomponenten für die Ladesäule.

Das Gerät ist ausschließlich der in der Bedienungsanleitung beschriebenen Aufgabe und Umgebung zu verwenden. Fehlende Wartung, falsche oder unsachgemäße Verwendung bzw. eigenmächtige Veränderung kann zur Zerstörung bzw. Fehlfunktion führen. Für hieraus resultierende Schäden haftet nicht der Hersteller und die Gewährleistung erlischt. Das Risiko hierfür trägt allein der Betreiber.

2.2 Installation / Wartung / Instandhaltung

Arbeiten am Gerät dürfen nur von Personen durchgeführt werden, die hiermit vertraut und über die Gefahren unterrichtet sind sowie die nötige Qualifikation aufweisen.

Hierbei sind besonders die allgemeingültigen Sicherheits- und Unfallverhütungs-Vorschriften sowie der Brandschutz zu beachten.

Der elektrische Anschluss darf ausschließlich durch eine Elektrofachkraft durchgeführt werden, entsprechend DIN VDE 1000! Insbesondere sind die örtlichen Schutzmaßnahmen sowie die gültigen VDE- und EN-Vorschriften sowie im öffentlichen Bereich zusätzlich die DGUV-Vorschrift einzuhalten! Die entsprechenden Sicherheitsprüfungen sind durchzuführen und zu protokollieren.

Für die Inbetriebsetzung einer Ladestation ist unter Umständen eine Genehmigung Ihres Netzbetreibers erforderlich!

Arbeiten am Gerät sind ausschließlich in spannungsfreiem Zustand erlaubt (Netztrennung).

2.3 Ladekabel (bei Variante Spiralkabel)

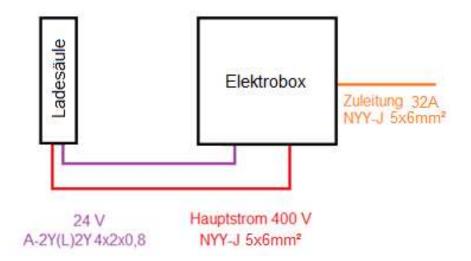
- Das Ladekabel darf nur durch Ziehen am Stecker (nicht am Kabel) ausgesteckt werden!
- Das Ladekabel darf nicht verlängert werden!
- Der Stecker ist vor Verschmutzung und Feuchtigkeit zu schützen!
- Das Kabel darf nicht geknickt, eingeklemmt oder überfahren werden!
- Nach der Ladung ist der Ladestecker wieder in der Parkbuchse zu arretieren.

3 Entsorgung

Wird die Ladestation endgültig aus dem Betrieb genommen, sind die einzelnen Komponenten fachgerecht in einem Recyclingbetrieb zu entsorgen.

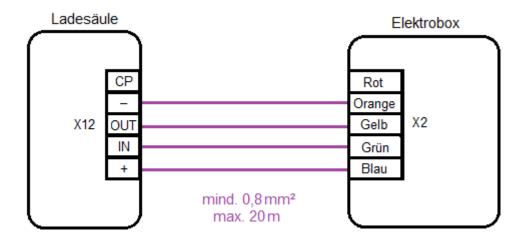
4 Allgemein

Der STROMAT-P in der Variante PURE ist für einzelne Ladepunkte im Außenbereich konzipiert. Es beinhaltet kein Energiezähler und auch keine übergeordnete Schnittstelle zu Backend-Systemen.

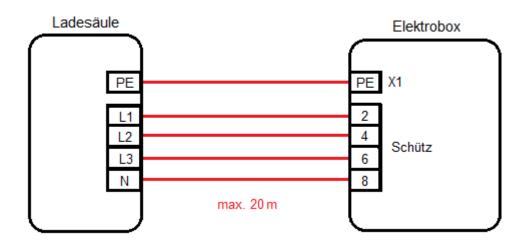

Die Ladesäule beinhaltet nur eine abgespeckte Steuerungseinheit. Diese ist im Kopf der Ladesäule untergebracht und verwaltet die Steuersignale zum Fahrzeug, steuert die LED-Beleuchtung und beinhaltet den RFID-Reader.

Über eine 4-adrige Steuerleitung (24 V Signale) wird die Säule mit der zugehörigen Elektrobox verbunden. In dieser Elektrobox sind die benötigten Hauptstromkomponenten verbaut.

4.1 Verkabelung


Das vorliegende Beispiel zeigt die Verkabelung zwischen Ladesäule und Elektrobox.

Die aufgeführten Kabeltypen und Querschnitte sind exemplarisch aufgeführt. Später erfolgt die Auswahl der Typen und Querschnitte in Abhängigkeit der Strombelastung und Absicherung, der Leitungslängen, des verwendeten Kabelmaterials, der Verlegeart und den gültigen Vorschriften.



4.1.1 24V Steuerleitung

4.1.2 Hauptstromleitung

5 Ladesäule

Es stehen Varianten mit Typ 2 Ladebuchse als auch mit fest verbundenem Spiralkabel zur Verfügung.

5.1 Technische Daten

Allgemein		STROMAT-P Buchse	STROMAT-P Spiralkabel
Anschluss		Typ 2 Buchse	5 m Spiralkabel
Ladestrom A		max. 32	max. 16
Ladeleistung	kW	max. 22	max. 11
Leistungsaufnahme Stand-By W		1,3	
Normen		IEC 62196, DIN EN 61851-1	

Abmessungen		STROMAT-P Buchse	STROMAT-P Spiralkabel
Durchmesser mm		114	
Höhe n		10	40
Gewicht	kg	6	8

Umgebungsbedingungen		STROMAT-P Buchse	STROMAT-P Spiralkabel
Temperaturbereich °C		-3050	
Schutzart		IP54	

Elektrischer Anschluss (Hauptstrom)		STROMAT-P Buchse	STROMAT-P Spiralkabel
3-Phasig		L1, L2, L3, N, PE	
Spannungsversorgung V, Hz		400, 5060	
Maximale Stromaufnahme A		32	16
Maximale bauseitige Absicherung A		35	20
Anschlussklemmen	mm²	•	6

Elektrischer Anschluss (Steuerung – X12	2)	STROMAT-P Buchse	STROMAT-P Spiralkabel
Steuerspannung	V-DC	2	4
Aderanzahl		4	1

Bedienung	STROMAT-P Buchse	STROMAT-P Spiralkabel
Anzeige 360° LED		LED
Authentifizierung RFID		FID

5.2 RFID-Reader

Kopfseitig der Ladesäule ist der RFID-Reader platziert.

Es können handelsübliche RFID-Transponder mit einer Frequenz von <u>13,56 MHz</u> und dem Protokoll MIFARE verwendet werden.

Alternativ können die passenden Transponder über den Hersteller bezogen werden.

Zur Authentifizierung liest der Reader die Identnummer des Transponders ein und vergleicht diese Zahl mit den zuvor hinterlegten Transpondern. Bei Übereinstimmung erfolgt die Ladefreigabe.

5.2.1 RFID-Transponder anlernen

Durch Betätigen des Teach-Taster wird der Teach-Modus gestartet (erkennbar am schnellen Blinken der roten Teach-LED auf der Platine). In diesem Zustand können nun die neu anzulernenden Transponder vor dem Reader gehalten werden. Sobald der RFID-Reader den Transponder erkennt, wird dieser dauerhaft abgespeichert und der Teach-Modus wird beendet.

Info: Bis zu 60 Transponder können beim Reader hinterlegt werden.

5.3 LED-Anzeige

Die 360° LED-Illumination zeigt den Status der Ladestation an.

Farbe	Beschreibung
	Ladefreigabe fehlt
AUS	
	Authentifizierung vorhanden (per RFIP), aber
WEIß	Ladefreigabe fehlt
blinkend	
	Ladefreigabe vorhanden
WEIß	 Freigabekontakt geschlossen
	 Authentifizierung des Benutzers (per RFID)
	Kommunikation zum Fahrzeug
GRÜN	
	Ladung aktiv
BLAU	
	Erhaltungsladung bzw. Drosselung durch den
BLAU/WEIß	Netzbetreiber (steuerbaren Verbrauchseinrichtung) aktiv
	Anforderung Kühlung
BLAU blinkend	
	DIP-Schalter falsch gesetzt
ROT	
	Undefinierte Spannung am CP-Kontakt eingelesen
ROT/WEIß	
	Systemfehler (Bitte kontaktieren Sie den Hersteller!)
ROT	
blinkend	

Info: Wird die Spannung neu eingeschaltet, sendet die Anzeige einen Blinkcode. Dieser Blinkcode symbolisiert die Softwareversion der Steuerplatine.

Beispiel: 4 mal blau blinken => Softwareversion 4 (11 kW Version)

4 mal grün blinken => Softwareversion 4 (22 kW Version)

5.4 Steuerplatine

Im Kopfteil der Ladesäule befindet sich die Steuerplatine. Durch Lösen der oberen Senkkopfschrauben an der Säule kann das Kopfteil nach oben herausgeschoben werden.

5.4.1 DIP-Schalter

	Beschreibung	Codierung		
DIP1	Ladestromeinstellung	DIP 1 EIN, DIP	2,3,4,5 AUS	=> 10 A
1-5		DIP 2 EIN, DIP	1,3,4,5 AUS	=> 16 A
		DIP 3 EIN, DIP	1,2,4,5 AUS	=> 20 A *)
		DIP 4 EIN, DIP	1,2,3,5 AUS	=> 25 A *)
		DIP 5 EIN, DIP	1,2,3,4 AUS	=> 32 A *)
DIP1	Erhaltungsladung	DIP 6 EIN, DIP	7 AUS	=> 6,5 A
6-7		DIP 7 EIN, DIP	6 AUS	=> 10,5 A
	Steuerbare Verbrauchs-	DIP 6 AUS, DIF	7 AUS	=> ausgeschaltet
	einrichtung nach §14a	DIP 7 EIN, DIP	6 EIN	=> eingeschaltet
DIP1	Aktivierung RS485	AUS	=> RS485 ausg	geschaltet
8	Schnittstelle	EIN	=> RS485 eing	eschaltet
DIP1	Intern	AUS		
9				
DIP1	Plug and Charge	AUS	=> Zum Starter	n der Ladung muss
10			Authentifizie	erung über RFID erfolgen
		EIN	=> Starten der	Ladung ohne
			Authentifizie	erung per RFID
DIP2	Intern	AUS, AUS		
1-2				

^{*)} nur bei Variante 22 kW

Achtung: Eine Änderung der DIP Einstellung darf nur durch eine Elektrofachkraft ausgeführt werden!

5.4.2 LEDs

LED	Beschreibung		
Power	Dauerhaft grün	24 V Versorung O.K.	
Run	Blinkend grün	Prozessor in Betrieb	
Teach	Blinkend rot	RFID Teach Modus aktiviert	
TX	Blinkend orange	Intern	
RX	Blinkend orange	Intern	

5.4.3 Teach-Taster

Aktivierung des Teach Modus zum Anlernen von RFID Transpondern.

5.4.4 Anschlüsse

	Beschreibung	Anschluss	
X12	Verbindung zur Elektrobox	+ 24 V IN Digital Input: Ladefreigabe OUT Digital Output: Ansteuerung magnetische Verriegelung Ladebuchse - GND CP CP-Schnittstelle zum Fahrzeug	
X14	Nicht verwendet		

5.5 Ladestromeinstellung

Mit den DIP1-Schaltern 1..5 wird der maximale Ladestrom eingestellt werden, welche die Ladestation dem Fahrzeug zur Verfügung stellt.

5.6 Erhaltungsladung

Mit den DIP1-Schaltern 6..7 wird ein fester Ladestrom eingestellt, welcher verwendet wird, wenn die Ladestation in die Funktion "Erhaltungsladung" geht.

Bei der Erhaltungsladung wird ein aktuell ausgeführter Ladevorgang mit einem festen Ladestrom weitergeführt, wenn während des Ladevorgangs der Freigabekontakt geöffnet wird. Die Erhaltungsladung wird automatisch gestoppt, wenn das Fahrzeug die Ladung beendet.

5.7 Fundamentbefestigung

Zur Befestigung der Ladesäule bietet der Hersteller 2 verschiedene Fundamentbefestigungen an, welche sich durch die Größe der Bodenplatte unterscheiden (Variante Fundamentplatte verdeckt und Variante Fundamentplatte übergroß).

Das runde Rohr der Ladesäule wird über dieses Quadratrohr gesteckt, wobei Befestigungspunkte in verschiedenen Höhen verwendet werden können. Somit kann z. B. die Fundamentplatte übergepflastert und das Rundrohr später übergestülpt sowie in passender Höhe verschraubt werden.

Mindestanforderung für ein Fundament:

Maße: 40 x 40 x 80 cm

Betongüte: C20/25

6 Elektrobox

Die Box ist in den Varianten 11 kW/16 A und 22 kW/32 A erhältlich.

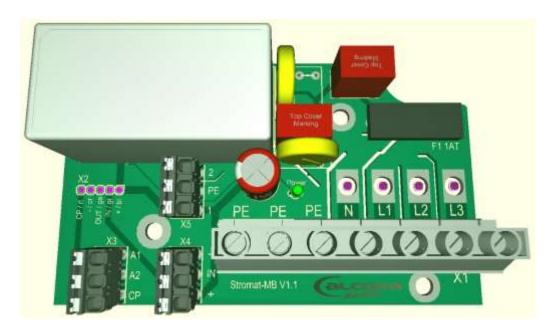
Art.Nr.	Bezeichnung
	Stromat-P Pure Verteilerschrank Wand 20A/6mm ²
ALC-STRP-VP-W16A1-11	1 Ladepunkt 11kW
	Stromat-P Pure Verteilerschrank Wand 35A/6mm ²
ALC-STRP-VP-W32A1-22	1 Ladepunkt 22kW

6.1 Technische Daten

Allgemein	
Platzierung	Innen- und Außenbereich
Befestigung	Wandmontage

Abmessungen		
Höhe	mm	130
Breite	mm	180
Tiefe	mm	110
Gewicht	kg	1.3

Umgebungsbedingungen		
Temperaturbereich	°C	-3050
Schutzart		IP65


Elektrischer Anschluss (Hauptstrom)	
3-Phasig		L1, L2, L3, N, PE
Spannungsversorgung	V, Hz	400, 5060
Maximale Stromaufnahme	А	16 bzw. 32
Maximale bauseitige Absicherung	А	20 bzw. 35
Fehlerstromschutzschalter	Тур	A
- Auslösestrom	mA	30
Anschlussklemmen	mm²	6

Schnittstellen	
Freigabekontakt	Externer potentialfreier Schließerkontakt

6.2 Basisplatine

Im Gehäuseboden der Elektrobox befindet sich die Basisplatine.

Bauteil	Beschreibung	
	Feinsicherung 5 x 20	
F1	1A-Träge	
	Anschluss Hauptstromzuleitung	
X1	PE, N, L1, L2, L3	
	Steuerleitung zu Ladesäule	
X2	(CP), -, OUT, IN, +	
	Ansteuerung Schütz	
X3		
	Freigabekontakt	
X4		
	- GND	
	IN Digital INPUT	
	+ +24V-DC	
	Brücke zwischen "+" und "IN" => Ladefreigabe aktiv	
	Anschluss DC-Wächter	
X5		
LED Power	Spannungsversorgung O.K.	

6.3 Fehlerstromschutz

Der Stromkreis muss durch einen Fehlerstromschutzschalter (RCD) vom Typ A mit einem Auslösestrom von 30 mA geschützt werden.

z. B. ABB F204 A-40/0,03

Dieser Fehlerstromschutzschalter ist in der Hausverteilung vor der Zuleitung zum STROMAT-P zu installieren. Jeder Ladepunkt muss mit einem separaten Fehlerstromschutzschalter ausgeführt sein.

Die Ladeelektronik im Fahrzeug kann einen Gleich-Fehlerstrom erzeugen, welcher durch den Fehlerstromschutzschalter Typ A nicht erkannt wird. Zum Schutz vor diesen Gleich-Fehlerströmen besitzt die Elektrobox des STROMAT-P einen integrierten DC-Wächter. Dieses Bauteil erkennt diese Fehlerströme und lässt im Fehlerfall den in der Hausverteilung vorhandenen Fehlerstromschutzschalter auslösen. Somit ist kein allstromsensitiver Fehlerstromschutzschalter (Typ B) erforderlich!

Der DC-Wächter besitzt einen Test-Knopf zur Überprüfung der Fehlerstromschutzeinrichtung. Bei Betätigen wird ein 6 mA DC-Fehlerstrom generiert. Daraufhin erzeugt der DC-Wächter einen AC-Fehlerstrom, welcher den im Verteilerschrank platzieren RCD auslöst.

Diese Funktionsweise ist bei der Inbetriebnahme des Gerätes und später einmal jährlich zu überprüfen.

6.4 Symmetrischer Betrieb

Der Netzanschluss muss zwingend 3-phasig erfolgen.

Sollte das angeschlossene Elektrofahrzeug jedoch nur ein- bzw. zweiphasig laden, sind geeignete Maßnahmen zu ergreifen, damit die auftretende Unsymmetrie 4,6 kVA nicht überschreitet. Hierzu ist die Ladestromeinstellung (DIP1:1-5) auf maximal 20 A zu begrenzen.

6.5 Steuerbare Verbrauchseinrichtung nach §14a

Seit dem 01.01.2024 muss entsprechend der Bundesnetzagentur §14a die Ladestation über den Netzbetreiber steuerbar sein. Dies bedeutet, dass der Netzbetreiber bei einer drohenden Netzüberlastung die Möglichkeit haben muss, die Ladeeinrichtung auf 4,2kW Ladeleistung zu begrenzen.

Beim STROMAT-P PURE wird diese Funktion mit Hilfe des Freigabekontaktes X4 der Basisplatine gelöst.

Anschluss:

Maximale Ladeleistung	4,2 kW Ladeleistung
X4 - IN +	X4 - IN +
Steuerkontakt Netzbetreiber geschlossen	Steuerkontakt Netzbetreiber geöffnet

Aktivierung:

Mit den DIP-Schaltern1:6..7 wird die Steuerbarkeit vom Netzbetreiber aktiviert.

DIP1:6 AUS, DIP1:7 AUS => Steuerbare Verbrauchseinrichtung ausgeschaltet DIP1:6 EIN, DIP1:7 EIN => Steuerbare Verbrauchseinrichtung eingeschaltet

Info: Wird der Freigabekontakt X4 bereits für optionale Erweiterungen wie z. B. Solarkopplung, Dyn. Lastmanagement bzw. COMPACTO verwendet, steht er nicht mehr als steuerbare Verbrauchseinrichtung durch den Netzbetreiber nach §14a zur Verfügung. In diesem Fall kann eine Steuerbarkeit der Ladeeinrichtung über die RS485 Modbus Schnittstelle erfolgen (Protokollbeschreibung ist beim Hersteller zu erfragen).

7 Wartung

7.1 Jährlich

- Überprüfung der Fehlerstromschutzeinrichtung durch Betätigen des Test-Knopfes am DC-Wächter.
- Überprüfung des Ladekabels und des Ladesteckers auf mechanische Defekte.
- Überprüfung der Funktionsweise der LED-Anzeige.

Achtung: Wird die Ladestation im öffentlichen Bereich betrieben, sind zusätzliche Wartungen entsprechend der DGUV-Vorschrift einzuhalten!

Achtung: Defekte bzw. beschädigte Komponenten sind unverzüglich auszutauschen!

Achtung: Nur Original-Ersatzteile verwenden!

8 EG-Konformitätserklärung

Hiermit bestätigen wir die Übereinstimmung der aufgeführten Geräte mit den Richtlinien des Rates der Europäischen Gemeinschaft, welche mit dem CE-Zeichen gekennzeichnet sind

Die Sicherheits- und Installationshinweise der Dokumentation sind zu beachten.

Hersteller: alcona Automation GmbH, Ahlener Straße 48, D-59269 Beckum

Gerät: STROMAT-P Typ: ALC-STRP-B3

Richtlinie: EMV 2014/30/EU

Niederspannung 2014/35/EU

Normen: DIN EN 61851-1

VDE-AR-N 4100

Beckum, 07. Juni 2022

Andreas Kulke,

alcona Automation GmbH